Categories: science

As condições hiper-estressadas no núcleo externo da Terra foram recriadas no laboratório

Milhares de quilômetros abaixo da superfície da Terra, sob pressões e temperaturas extremas, o núcleo do planeta pode ser encontrado. Existe um núcleo interno que consiste em uma esfera sólida de níquel-ferro que gira superfluamente dentro do núcleo externo, onde o ferro e o níquel são líquidos.

As condições desse núcleo externo já foram recriadas em laboratório, por uma equipe liderada pelo físico Sebastian Merkel, da Universidade de Lille, na França – de tal forma que os cientistas puderam observar a deformação estrutural do ferro.

Isso não só tem implicações para a compreensão do nosso planeta, mas pode nos ajudar a entender melhor o que acontece quando pedaços de ferro colidem no espaço.

“Não criamos condições substantivas inteiramente internamente”, A física Arianna Gleeson disse: Do Laboratório Nacional de Aceleradores SLAC do Departamento de Energia dos EUA. “Mas nós alcançamos as condições do núcleo externo do planeta, o que é muito legal”.

Em condições normais da Terra, a estrutura cristalina do ferro é A treliça de cubo. Os átomos são organizados em uma grade, com átomos no canto de cada cubo e um no centro. Quando o ferro é comprimido sob pressões extremamente altas, esta estrutura muda de forma e se deforma para um estrutura hexagonal. Isso permite que mais átomos sejam empacotados no mesmo volume de espaço.

Mas é difícil dizer o que está acontecendo mesmo em pressões e temperaturas mais altas – como aquelas no núcleo da Terra. No entanto, nos últimos anos, a tecnologia do laser avançou a tal ponto que, em ambientes de laboratório, pequenas amostras podem ser expostas a condições extremas, como as pressões e temperaturas encontradas em estrelas anãs brancas.

A equipe do SLAC implantou dois lasers. O primeiro é um laser óptico, que dispara uma amostra microscópica de ferro e a expõe a um choque que cria pressão e calor extremos.

As pressões do núcleo externo da Terra variam de 135 a 330 gigapascais (1,3 a 3,3 milhões de atmosferas) e temperaturas entre 4.000 e 5.000 K (3727 a 4727 ° C, ou 6.740 a 8.540 ° F). Pressão e temperaturas de até 4.070 K .

A próxima parte, e provavelmente a mais difícil, foi medir a estrutura atômica do ferro durante esse processo. Para isso, a equipe usou o laser Linac Coherent Light Source (LCLS) sem raios-X, que examinou a amostra enquanto disparava a luz do laser.

“Fomos capazes de fazer uma medição em um bilionésimo de segundo”, Gleeson disse. “Congelar átomos onde eles estão nesses nanossegundos é realmente excitante.”

As imagens resultantes, agrupadas em uma sequência, revelaram que o ferro responde ao estresse adicional causado por essas condições pela geminação. Isso ocorre quando a rede cristalina se torna tão compacta que alguns pontos da rede são compartilhados por vários cristais de maneira simétrica.

(S. Merkel / Universidade de Lille, França)

Para o ferro nas condições do núcleo externo da Terra, isso significa que o arranjo atômico é empurrado para que os hexágonos girem cerca de 90 graus. Esse mecanismo permite que o metal resista às pontas, disseram os pesquisadores.

“A geminação permite que o ferro seja incrivelmente forte – mais forte do que pensávamos inicialmente – antes de começar a fluir plasticamente em escalas de tempo muito mais longas,” Gleeson disse.

Agora que sabemos como o ferro se comporta nessas condições, essas informações podem ser incorporadas em modelos e simulações. Isso tem implicações importantes para a maneira como entendemos a colisão espacial, por exemplo. O núcleo da Terra está organizado de maneira organizada dentro de um planeta, mas existem asteróides tão metálicos que pensamos serem os núcleos expostos e nus de planetas que interrompem sua formação.

Esses objetos podem colidir com outros objetos que podem deformar a estrutura de ferro neles. Agora temos uma ideia melhor de como isso acontece. E, claro, agora sabemos mais sobre nosso planeta.

“O futuro é brilhante agora que desenvolvemos uma maneira de fazer essas medições,” Gleeson disse.

“Agora podemos aprovar e aprovar alguns modelos físicos realmente básicos de mecanismos de deformação. Isso ajuda a construir um pouco do poder preditivo que nos falta para modelar como os materiais respondem em condições extremas.”

A pesquisa foi publicada em mensagens de revisão física.

Share
Published by
Opal Turner

Recent Posts

Encontrando os sinais de vida mais promissores em outro planeta, cortesia de James Webb

Os cientistas estão se concentrando na detecção de sulfeto de dimetila (DMS) em sua atmosfera.O…

7 horas ago

Velas listradas coloridas para iluminar a decoração da sua casa

Este conjunto de 4 velas listradas coloridas é perfeito para iluminar sua casa. Fomos sinceramente…

7 horas ago

Missão humanitária: Um cidadão de Limoelo a bordo de um dos navios da “Flotilha da Liberdade de Gaza”

Uma enfermeira de Quebec embarcou na flotilha de Gaza na manhã de sexta-feira em Istambul,…

7 horas ago

X admite que diversas contas bloqueadas no Brasil contornaram restrições

Rede social “Essas pessoas, após verem suas contas bloqueadas, adotaram diferentes estratégias para desafiar a…

8 horas ago

Fortes tornados atingem o centro dos Estados Unidos

Desculpe, seu navegador não suporta vídeos (Washington) – Enormes tornados escuros rasgam o céu: Dezenas…

15 horas ago

X admite que diversas contas bloqueadas no Brasil contornaram restrições

Rede social “Essas pessoas, após verem suas contas bloqueadas, adotaram diferentes estratégias para desafiar a…

16 horas ago